Identification	Subject	MATH 215, Linear algebra and mathematical analysis, 6 ECTS	
	Department	Mathematics	
	Program	Undergraduate	
	Term	Spring, 2024	
	Instructor	Sadigova Sabina	
	E-mail:	S_sadigova@ mail.ru, sabina.sadigova@khazar.org	
	Phone:	(+994 50) 4542265	
	Classroom/hours	Monday: 08:30-10:00, 10:10-11:40	
	Office hours		
Prerequisites	The prerequisites are high school algebra and trigonometry. Prio experience with calculus is helpful but not necessary.		
Language	English		
Compulsory/Elective	Compulsory		
Required textbooks and course materials	1. George Tho 2. V.V. Kone Geometry, 3. David C. 2012 Supplementary bo 1. James Ste Edition, B 2. Poole, D.,	mas, et al, Thomas' Calculu Addison-Wesley (2010), Linear Algebra, Vector Alg extbook. Tomsk: TPU Pres ay, Linear Algebra and it k art, Essential calculus. Early ooks/Cole (2013)(http://libg inear algebra: a modern intro	Transcendental, bgen.org/) and Analytical 114 pp . ications. $4^{\text {th }}$ editio endentals, Second n. $4^{\text {th }}$ Edition, 201
Course outline	Linear algebra and analytic geometry is a major course at School of Economics and Management. This introductory course covers two content areas: Linear Algebra and Mathematical analysis. This introductory course covers differentiation, matrix operations, determinants and systems of linear equations.		
Course outline	- Concept of - Limits and - Derivative - Matrix alg - Determina - Systems of - Gaussian	functions; trigonometric fun continuity Differentiation rules bra ts linear equations imination	
Course objectives	The concepts of limit; tangent to curve; differentiation; chain rule calculations of determinants, matrix operations, Systems of linea equations, Gaussian elimination.		
Learning outcomes	Upon successfully completing this course students will be able to: - To find limit of functions at points - To find derivatives of functions - To apply theorems to solve real world problems - Calculations of determinants - Matrix operations - Solve systems of linear equations		
Teaching methods	Lecture		x
	Assisted work		x
	Assisted lab work		x
Evaluation	Methods	Date/deadlines	Percentage (\%)
	Midterm Exam		30
	Class Participation		5
	Quizzes (4-5)		20 (3 quizzes)

Week	Date/Day (Tentative)	Topics	Textbook/Assign ments
1	$\begin{aligned} & \hline 12.02 .24 \\ & 12.02 .24 \end{aligned}$	- Rates of Change and Tangents to Curves - Limit of a Function and Limit Laws	[1] Ch.2.1, 2.2
2	$\begin{aligned} & \hline 19.02 .24 \\ & 19.02 .24 \end{aligned}$	- The Precise Definition of a Limit - Practice	[1] Ch. 2.3
3	$\begin{aligned} & 26.02 .24 \\ & 26.02 .24 \end{aligned}$	- One-Sided Limits - Continuity	[1] Ch. 2.4, 2.5
4	$\begin{aligned} & \hline 04.03 .24 \\ & 04.03 .24 \end{aligned}$	- Limits Involving Infinity; Asymptotes of Graphs - Tangents and the Derivative at a Point	[1] Ch. 2.6, 3.1
5	$\begin{aligned} & \hline 11.03 .24 \\ & 11.03 .24 \end{aligned}$	- The Derivative as a Function - Differentiation Rules	[1] Ch. 3.2, 3.3 Quiz 1 (6 pts)
6	$\begin{aligned} & 18.03 .24 \\ & 18.03 .24 \end{aligned}$	- The Derivative as a Rate of Change - Derivatives of Trigonometric Functions	[1] Ch. 3.4, 3.5
7	$\begin{aligned} & 25.03 .24 \\ & 25.03 .24 \end{aligned}$	- The Chain Rule - Implicit Differentiation	[1] Ch. 3.6, 3.7
8	$\begin{aligned} & \hline 01.04 .24 \\ & 01.04 .24 \end{aligned}$	- Derivatives of Inverse Functions and Logarithms	[1] Ch. 3.8
9	$\begin{aligned} & \hline 08.04 .24 \\ & 08.04 .24 \end{aligned}$	- Midterm Exam - Inverse Trigonometric Functions	[1] Ch. 3.9
10	$\begin{aligned} & \hline 15.04 .24 \\ & 15.04 .24 \end{aligned}$	- Systems of linear equations: Basic Concepts, Gaussian Elimination, Homogeneous Systems of Linear Equations - Matrices: Basic definitions, Matrix operations, Types of matrices, Kronecker Delta Symbol, Properties of Matrix Operations	$\begin{aligned} & \text { [2] p. 43-53 } \\ & {[2] \text { p. } 7-19} \end{aligned}$
11	$\begin{aligned} & 22.04 .24 \\ & 22.04 .24 \end{aligned}$	- Determinants: Permutations and Transpositions, Determinant General Definition, Properties of Determinants	$\begin{aligned} & \text { Quiz-2 (7 pts) } \\ & \text { [2] p. 20-30 } \end{aligned}$
12	$\begin{aligned} & 29.04 .24 \\ & 29.04 .24 \end{aligned}$	- Determinant Calculation - Practice	[2] p. 31-35
13	$\begin{aligned} & \hline 06.05 .24 \\ & 06.05 .24 \end{aligned}$	- Inverse matrices: Three Lemmas, Theorem of Inverse Matrix, Calculation of Inverse Matrices by Elementary Transformations	[2] p. 36-42
14	$\begin{aligned} & \hline 13.05 .24 \\ & 13.05 .24 \end{aligned}$	- Matrix Rank - Problem solving	$\begin{aligned} & \text { Quiz-3 (7 pts) } \\ & \text { [2] p. 43-53 } \end{aligned}$
15	$\begin{aligned} & 20.05 .24 \\ & 20.05 .24 \end{aligned}$	- Cramer's Rule, Cramer's General Rule - Problem solving	[2] p.54-59
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

